Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 3234: 173-190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507207

RESUMO

High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.


Assuntos
Elétrons , Proteínas de Membrana , Microscopia Crioeletrônica/métodos , Congelamento , Manejo de Espécimes/métodos , Substâncias Macromoleculares
2.
Cells ; 11(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359796

RESUMO

Copper is a transition metal essential for human life. Its homeostasis is regulated in the liver, which delivers copper to the whole body and excretes its excess outside the organism in the feces through the bile. These functions are regulated within hepatocytes, and the ATP7B copper transporter is central to making the switch between copper use and excretion. In Wilson disease, the gene coding for ATP7B is mutated, leading to copper overload, firstly, in the liver and the brain. To better understand the role of ATP7B in hepatocytes and to provide a smart tool for the development of novel therapies against Wilson disease, we used the CrispR/Cas9 tool to generate hepatocyte cell lines with the abolished expression of ATP7B. These cell lines revealed that ATP7B plays a major role at low copper concentrations starting in the micromolar range. Moreover, metal stress markers are induced at lower copper concentrations compared to parental cells, while redox stress remains not activated. As shown recently, the main drawback induced by copper exposure is protein unfolding that is drastically exacerbated in ATP7B-deficient cells. Our data enabled us to propose that the zinc finger domain of DNAJ-A1 would serve as a sensor of Cu stress. Therefore, these Wilson-like hepatocytes are of high interest to explore in more detail the role of ATP7B.


Assuntos
ATPases Transportadoras de Cobre , Cobre , Degeneração Hepatolenticular , Humanos , Linhagem Celular , Cobre/farmacologia , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Hepatócitos/metabolismo , Degeneração Hepatolenticular/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo
3.
Angew Chem Int Ed Engl ; 61(12): e202116621, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35041243

RESUMO

Recently, we demonstrated that AgI can directly replace ZnII in zinc fingers (ZFs). The cooperative binding of AgI to ZFs leads to a thermodynamically irreversible formation of silver clusters destroying the native ZF structure. Thus, a reported loss of biological function of ZF proteins is a likely consequence of such replacement. Here, we report an X-ray absorption spectroscopy (XAS) study of Agn Sn clusters formed in ZFs to probe their structural features. Selective probing of the local environment around AgI by XAS showed the predominance of digonal AgI coordination to two sulfur donors, coordinated with an average Ag-S distance at 2.41 Å. No Ag-N bonds were present. A mixed AgS2 /AgS3 geometry was found solely in the CCCH AgI -ZF. We also show that cooperative replacement of ZnII ions with the studied Ag2 S2 clusters occurred in a three-ZF transcription factor protein 1MEY#, leading to a dissociation of 1MEY# from the complex with its cognate DNA.


Assuntos
Prata , Dedos de Zinco , DNA/química , Proteínas de Ligação a DNA/química , Prata/química , Fatores de Transcrição/química
4.
Int J Pharm ; 609: 121193, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34673167

RESUMO

Copper homeostasis is finely regulated in human to avoid any detrimental impact of free intracellular copper ions. Upon copper accumulation, biliary excretion is triggered in liver thanks to trafficking of the ATP7B copper transporter to bile canaliculi. However, in Wilson's disease this protein is mutated leading to copper accumulation. Current therapy uses Cu chelators acting extracellularly and requiring a life-long treatment with side effects. Herein, a new Cu(I) pro-chelator was encapsulated in long-term stable nanostructured lipid carriers. Cellular assays revealed that the pro-chelator protects hepatocytes against Cu-induced cell death. Besides, the cellular stresses induced by moderate copper concentrations, including protein unfolding, are counteracted by the pro-chelator. These data showed the pro-chelator efficiency to deliver intracellularly an active chelator that copes with copper stress and surpasses current and under development chelators. Although its biological activity is more mitigated, the pro-chelator nanolipid formulation led to promising results. This innovative approach is of outmost importance in the quest of better treatments for Wilson's disease.


Assuntos
Degeneração Hepatolenticular , Quelantes , Cobre , ATPases Transportadoras de Cobre/química , Hepatócitos , Degeneração Hepatolenticular/tratamento farmacológico , Humanos
5.
J Struct Biol ; 213(3): 107766, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216761

RESUMO

Metals are essential for life and their concentration and distribution in organisms are tightly regulated. Indeed, in their free form, most transition metal ions are toxic. Therefore, an excess of physiologic metal ions or the uptake of non-physiologic metal ions can be highly detrimental to the organism. It is thus fundamental to understand metal distribution under physiological, pathological or environmental conditions, for instance in metal-related pathologies or upon environmental exposure to metals. Elemental imaging techniques can serve this purpose, by allowing the visualization and the quantification of metal species in tissues down to the level of cell organelles. Synchrotron radiation-based X-ray fluorescence (SR-XRF) microscopy is one of the most sensitive techniques to date, and great progress was made to reach nanoscale spatial resolution. Here we propose a correlative method to couple SR-XRF to electron microscopy (EM), with the possibility to quantify selected elemental contents in a specific organelle of interest with 50 × 50 nm2 raster scan resolution. We performed EM and SR-XRF on the same section of hepatocytes exposed to silver nanoparticles, in order to identify mitochondria through EM and visualize Ag co-localized with these organelles through SR-XRF. We demonstrate the accumulation of silver in mitochondria, which can reach a 10-fold higher silver concentration compared to the surrounding cytosol. The sample preparation and experimental setup can be adapted to other scientific questions, making the correlative use of SR-XRF and EM suitable to address a large panel of biological questions related to metal homeostasis.


Assuntos
Nanopartículas Metálicas , Oligoelementos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência/métodos , Organelas , Prata , Espectrometria por Raios X/métodos , Raios X
6.
Metallomics ; 13(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33576806

RESUMO

Nanotoxicology remains an important and emerging field since only recent years have seen the improvement of biological models and exposure setups toward real-life scenarios. The appropriate analysis of nanomaterial fate in these conditions also required methodological developments in imaging to become sensitive enough and element specific. In the last 2-4 years, impressive breakthroughs have been achieved using electron microscopy, nanoscale secondary ion mass spectrometry, X-ray fluorescence microscopy, or fluorescent sensors. In this review, basics of the approaches and application examples in the study of nanomaterial fate in biological systems will be described to highlight recent successes in the field.


Assuntos
Compostos Inorgânicos/metabolismo , Imagem Molecular/métodos , Nanoestruturas/análise , Organelas/metabolismo , Compostos Inorgânicos/análise , Compostos Inorgânicos/química , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Nanoestruturas/química , Organelas/química , Espectrometria de Massa de Íon Secundário/métodos
7.
J Drug Target ; 29(1): 99-107, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936032

RESUMO

Liver is the main organ for metabolism but is also subject to various pathologies, from viral, genetic, cancer or metabolic origin. There is thus a crucial need to develop efficient liver-targeted drug delivery strategies. Asialoglycoprotein receptor (ASGPR) is a C-type lectin expressed in the hepatocyte plasma membrane that efficiently endocytoses glycoproteins exposing galactose (Gal) or N-acetylgalactosamine (GalNAc). Its targeting has been successfully used to drive the uptake of small molecules decorated with three or four GalNAc, thanks to an optimisation of their spatial arrangement. Herein, we assessed the biological properties of highly stable nanostructured lipid carriers (NLC) made of FDA-approved ingredients and formulated with increasing amounts of GalNAc. Cellular studies showed that a high density of GalNAc was required to favour hepatocyte internalisation via the ASGPR pathway. Interaction studies using surface plasmon resonance and the macrophage galactose-lectin as GalNAc-recognising lectin confirmed the need of high GalNAc density for specific recognition of these NLC. This work is the first step for the development of efficient nanocarriers for prolonged liver delivery of active compounds.


Assuntos
Acetilgalactosamina/metabolismo , Portadores de Fármacos/metabolismo , Endocitose/fisiologia , Hepatócitos/metabolismo , Lectinas/metabolismo , Nanoestruturas , Acetilgalactosamina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Endocitose/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Lipídeos/administração & dosagem , Nanoestruturas/administração & dosagem
8.
Cancers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255972

RESUMO

Iron (Fe) is a trace element that plays essential roles in various biological processes such as DNA synthesis and repair, as well as cellular energy production and oxygen transport, and it is currently widely recognized that iron homeostasis is dysregulated in many cancers. Indeed, several iron homeostasis proteins may be responsible for malignant tumor initiation, proliferation, and for the metastatic spread of tumors. A large number of studies demonstrated the potential clinical value of utilizing these deregulated proteins as prognostic and/or predictive biomarkers of malignancy and/or response to anticancer treatments. Additionally, the iron present in cancer cells and the importance of iron in ferroptosis cell death signaling pathways prompted the development of therapeutic strategies against advanced stage or resistant cancers. In this review, we select relevant and promising studies in the field of iron metabolism in cancer research and clinical oncology. Besides this, we discuss some co-existing discrepant findings. We also present and discuss the latest lines of research related to targeting iron, or its regulatory pathways, as potential promising anticancer strategies for human therapy. Iron chelators, such as deferoxamine or iron-oxide-based nanoparticles, which are already tested in clinical trials, alone or in combination with chemotherapy, are also reported.

9.
Cancers (Basel) ; 12(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271772

RESUMO

In the human body, copper (Cu) is a major and essential player in a large number of cellular mechanisms and signaling pathways. The involvement of Cu in oxidation-reduction reactions requires close regulation of copper metabolism in order to avoid toxic effects. In many types of cancer, variations in copper protein levels have been demonstrated. These variations result in increased concentrations of intratumoral Cu and alterations in the systemic distribution of copper. Such alterations in Cu homeostasis may promote tumor growth or invasiveness or may even confer resistance to treatments. Once characterized, the dysregulated Cu metabolism is pinpointing several promising biomarkers for clinical use with prognostic or predictive capabilities. The altered Cu metabolism in cancer cells and the different responses of tumor cells to Cu are strongly supporting the development of treatments to disrupt, deplete, or increase Cu levels in tumors. The metallic nature of Cu as a chemical element is key for the development of anticancer agents via the synthesis of nanoparticles or copper-based complexes with antineoplastic properties for therapy. Finally, some of these new therapeutic strategies such as chelators or ionophores have shown promising results in a preclinical setting, and others are already in the clinic.

10.
Nanoscale Horiz ; 5(3): 507-513, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32118225

RESUMO

Silver nanoparticles (AgNPs) are efficient biocides increasingly used in consumer products and medical devices. Their activity is due to their capacity to release bioavailable Ag(i) ions making them long-lasting biocides but AgNPs themselves are usually easily released from the product. Besides, AgNPs are highly sensitive to various chemical environments that triggers their transformation, decreasing their activity. Altogether, widespread use of AgNPs leads to bacterial resistance and safety concerns for humans and the environment. There is thus a crucial need for improvement. Herein, a proof of concept for a novel biocide based on AgNP assemblies bridged together by a tri-thiol bioinspired ligand is presented. The final nanomaterial is stable and less sensitive to chemical environments with AgNPs completely covered by organic molecules tightly bound via their thiol functions. Therefore, these AgNP assemblies can be considered as safer-by-design and innovative biocides, since they deliver a sufficient amount of Ag(i) for biocidal activity with no release of AgNPs, which are insensitive to transformations in the nanomaterial.


Assuntos
Desinfetantes/química , Nanopartículas Metálicas/química , Prata/química , Compostos de Sulfidrila/química , Desenho de Fármacos , Estabilidade de Medicamentos , Prata/farmacocinética
11.
Chem Commun (Camb) ; 56(9): 1329-1332, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31912071

RESUMO

Silver (Ag(i)) binding to consensus zinc fingers (ZFs) causes Zn(ii) release inducing a gradual disruption of the hydrophobic core, followed by an overall conformational change and formation of highly stable AgnSn clusters. A compact eight-membered Ag4S4 structure formed by a CCCC ZF is the first cluster example reported for a single biological molecule. Ag(i)-induced conformational changes of ZFs can, as a consequence, affect transcriptional regulation and other cellular processes.

12.
Biomater Sci ; 8(1): 485-496, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31755497

RESUMO

Liver is pivotal in organism metabolism. This organ is receiving nutriments from the portal vein and then storing, metabolizing, distributing in the circulation or excreting excess and xenobiotics in bile. Liver architecture and hepatocyte polarization are crucial to achieve these functions. To study these mechanisms in details, relevant cell culture systems are required, which is not the case with standard 2D cell culture. Besides, primary hepatocytes rapidly de-differenciate making them inefficient in forming physiological system. Herein, we used an hepatoma-derived cell line to produce matrix-free hepatic spheroids and developed an integrated structural cell biology methodology by combining light sheet fluorescence microscopy and 3D electron microscopy to study their function and structure. Within these spheroids, hepatocytes polarize and organize to form bile canaliculi active for both organics and inorganics excretion. Besides, live imaging revealed the high dynamic of actin networks in basal membranes compared to their high stability in the apical pole that constitutes bile canaliculi. Finally, the first structure of active bile canaliculi was solved at nm resolution and showed the very high density of microvilli coming from all cells constituting the canaliculus. Therefore, this study is the first comprehensive and in-depth functional and structural study of bile canaliculi in a physiological-relevant context.


Assuntos
Canalículos Biliares/metabolismo , Hepatócitos/citologia , Esferoides Celulares/citologia , Técnicas de Cultura de Células , Desdiferenciação Celular , Polaridade Celular , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Microscopia de Fluorescência , Esferoides Celulares/metabolismo
13.
EMBO J ; 36(20): 2968-2986, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28899899

RESUMO

Nonsense-mediated mRNA decay (NMD) is a cellular surveillance pathway that recognizes and degrades mRNAs with premature termination codons (PTCs). The mechanisms underlying translation termination are key to the understanding of RNA surveillance mechanisms such as NMD and crucial for the development of therapeutic strategies for NMD-related diseases. Here, we have used a fully reconstituted in vitro translation system to probe the NMD proteins for interaction with the termination apparatus. We discovered that UPF3B (i) interacts with the release factors, (ii) delays translation termination and (iii) dissociates post-termination ribosomal complexes that are devoid of the nascent peptide. Furthermore, we identified UPF1 and ribosomes as new interaction partners of UPF3B. These previously unknown functions of UPF3B during the early and late phases of translation termination suggest that UPF3B is involved in the crosstalk between the NMD machinery and the PTC-bound ribosome, a central mechanistic step of RNA surveillance.


Assuntos
Terminação Traducional da Cadeia Peptídica , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Humanos , Degradação do RNAm Mediada por Códon sem Sentido
14.
Materials (Basel) ; 10(3)2017 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772589

RESUMO

The present work was focused on the synthesis and characterization of hydroxyapatite doped with low concentrations of zinc (Zn:HAp) (0.01 < xZn < 0.05). The incorporation of low concentrations of Zn2+ ions in the hydroxyapatite (HAp) structure was achieved by co-precipitation method. The physico-chemical properties of the samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), zeta-potential, and DLS and N2-BET measurements. The results obtained by XRD and FTIR studies demonstrated that doping hydroxyapatite with low concentrations of zinc leads to the formation of a hexagonal structure with lattice parameters characteristic to hydroxyapatite. The XRD studies have also shown that the crystallite size and lattice parameters of the unit cell depend on the substitutions of Ca2+ with Zn2+ in the apatitic structure. Moreover, the FTIR analysis revealed that the water content increases with the increase of zinc concentration. Furthermore, the Energy Dispersive X-ray Analysis (EDAX) and XPS analyses showed that the elements Ca, P, O, and Zn were found in all the Zn:HAp samples suggesting that the synthesized materials were zinc doped hydroxyapatite, Ca10-xZnx(PO4)6(OH), with 0.01 ≤ xZn ≤ 0.05. Antimicrobial assays on Staphylococcus aureus and Escherichia coli bacterial strains and HepG2 cell viability assay were carried out.

15.
Biochim Biophys Acta Gen Subj ; 1861(6): 1566-1577, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27993661

RESUMO

BACKGROUND: The use of nanomaterials is constantly increasing in electronics, cosmetics, food additives, and is emerging in advanced biomedical applications such as theranostics, bio-imaging and therapeutics. However their safety raises concerns and requires appropriate methods to analyze their fate in vivo. SCOPE OF REVIEW: In this review, we describe the current knowledge about the toxicity of labile metal (ZnO, CuO and Ag) nanoparticles (NPs) both at the organism and cellular levels, and describe the pathways that are triggered to maintain cellular homeostasis. We also describe advanced elemental imaging approaches to analyze intracellular NP fate. Finally, we open the discussion by presenting recent developments in terms of synthesis and applications of Ag and CuO NPs. MAJOR CONCLUSIONS: Labile metal nanoparticles (MeNPs) release metal ions that trigger a cellular response involving biomolecules binding to the ions followed by regulation of the redox balance. In addition, specific mechanisms are set up by the cell in response to physiological ions such as Cu(I) and Zn(II). Among all types of NPs, labile MeNPs induce the strongest inflammatory responses which are most probably due to the combined effects of the NPs and of its released ions. Interestingly, recent developments in imaging technologies enable the intracellular visualization of both the NPs and their ions and promise new insights into nanoparticle fate and toxicity. GENERAL SIGNIFICANCE: The exponential use of nanotechnologies associated with the difficulties of assessing their impact on health and the environment has prompted scientists to develop novel methodologies to characterize these nanoobjects in a biological context.


Assuntos
Biologia Celular , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Compostos de Prata/toxicidade , Óxido de Zinco/toxicidade , Animais , Bioensaio , Linhagem Celular , Cobre/química , Homeostase , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Nanopartículas Metálicas/química , Oxirredução , Tamanho da Partícula , Medição de Risco , Compostos de Prata/química , Testes de Toxicidade , Óxido de Zinco/química
16.
Sci Rep ; 6: 38399, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924919

RESUMO

The conserved SecYEG protein-conducting channel and the accessory proteins SecDF-YajC and YidC constitute the bacterial holo-translocon (HTL), capable of protein-secretion and membrane-protein insertion. By employing an integrative approach combining small-angle neutron scattering (SANS), low-resolution electron microscopy and biophysical analyses we determined the arrangement of the proteins and lipids within the super-complex. The results guided the placement of X-ray structures of individual HTL components and allowed the proposal of a model of the functional translocon. Their arrangement around a central lipid-containing pool conveys an unexpected, but compelling mechanism for membrane-protein insertion. The periplasmic domains of YidC and SecD are poised at the protein-channel exit-site of SecY, presumably to aid the emergence of translocating polypeptides. The SecY lateral gate for membrane-insertion is adjacent to the membrane 'insertase' YidC. Absolute-scale SANS employing a novel contrast-match-point analysis revealed a dynamic complex adopting open and compact configurations around an adaptable central lipid-filled chamber, wherein polytopic membrane-proteins could fold, sheltered from aggregation and proteolysis.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Canais de Translocação SEC/química , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Methanocaldococcus/química , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Modelos Moleculares , Difração de Nêutrons , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Espalhamento a Baixo Ângulo , Homologia Estrutural de Proteína , Especificidade por Substrato , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
17.
Adv Exp Med Biol ; 896: 79-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165320

RESUMO

Cell-free protein synthesis based on E. coli cell extracts has been described for the first time more than 50 years ago. To date, cell-free synthesis is widely used for the preparation of toxic proteins, for studies of the translation process and its regulation as well as for the incorporation of artificial or labeled amino acids into a polypeptide chain. Many efforts have been directed towards establishing cell-free expression as a standard method for gene expression, with limited success. In this chapter we will describe the state-of-the-art of cell-free expression, extract preparation methods and recent examples for successful applications of cell-free synthesis of macromolecular complexes.


Assuntos
Sistema Livre de Células , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Animais , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Complexos Multiproteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribossomos/metabolismo , Relação Estrutura-Atividade , Transcrição Gênica
18.
Inorg Chem ; 54(24): 11688-96, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26632864

RESUMO

Silver(I) is an unphysiological ion that, as the physiological copper(I) ion, shows high binding affinity for thiolate ligands; its toxicity has been proposed to be due to its capability to replace Cu(I) in the thiolate binding sites of proteins involved in copper homeostasis. Nevertheless, the nature of the Ag(I)-thiolate complexes formed within cells is poorly understood, and the details of Ag(I) coordination in such complexes in physiologically relevant conditions are mostly unknown. By making use of X-ray absorption spectroscopy (XAS), we characterized the Ag(I) binding sites in proteins related to copper homeostasis, such as the chaperone Atox1 and metallothioneins (MTs), as well as in bioinspired thiolate Cu(I) chelators mimicking these proteins, in solution and at physiological pH. Different Ag(I) coordination environments were revealed: the Ag-S bond length was found to correlate to the Ag(I) coordination number, with characteristic values of 2.40 and 2.49 Å in AgS2 and AgS3 sites, respectively, comparable to the values reported for crystalline Ag(I)-thiolate compounds. The bioinspired Cu(I) chelator L(1) is proven to promote the unusual trigonal AgS3 coordination and, therefore, can serve as a reference compound for this environment. In the Cu(I)-chaperone Atox1, Ag(I) binds in digonal coordination to the two Cys residues of the Cu(I) binding loop, with the AgS2 characteristic bond length of 2.40 ± 0.01 Å. In the multinuclear Ag(I) clusters of rabbit and yeast metallothionein, the average Ag-S bond lengths are 2.48 ± 0.01 Å and 2.47 ± 0.01 Å, respectively, both indicative of the predominance of trigonal AgS3 sites. This work lends insight into the coordination chemistry of silver in its most probable intracellular targets and might help in elucidating the mechanistic aspects of Ag(I) toxicity.


Assuntos
Cobre/química , Prata/química , Espectroscopia por Absorção de Raios X/métodos , Sítios de Ligação
19.
Nucleic Acids Res ; 43(15): 7600-11, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26130714

RESUMO

Mammalian nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that degrades mRNAs containing premature translation termination codons. Phosphorylation of the essential NMD effector UPF1 by the phosphoinositide-3-kinase-like kinase (PIKK) SMG-1 is a key step in NMD and occurs when SMG-1, its two regulatory factors SMG-8 and SMG-9, and UPF1 form a complex at a terminating ribosome. Electron cryo-microscopy of the SMG-1-8-9-UPF1 complex shows the head and arm architecture characteristic of PIKKs and reveals different states of UPF1 docking. UPF1 is recruited to the SMG-1 kinase domain and C-terminal insertion domain, inducing an opening of the head domain that provides access to the active site. SMG-8 and SMG-9 interact with the SMG-1 C-insertion and promote high-affinity UPF1 binding to SMG-1-8-9, as well as decelerated SMG-1 kinase activity and enhanced stringency of phosphorylation site selection. The presence of UPF2 destabilizes the SMG-1-8-9-UPF1 complex leading to substrate release. Our results suggest an intricate molecular network of SMG-8, SMG-9 and the SMG-1 C-insertion domain that governs UPF1 substrate recruitment and phosphorylation by SMG-1 kinase, an event that is central to trigger mRNA decay.


Assuntos
Fosfatidilinositol 3-Quinases/química , RNA Helicases/química , Sítios de Ligação , Microscopia Crioeletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , RNA Helicases/metabolismo
20.
Nucleic Acids Res ; 42(4): 2673-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24271394

RESUMO

Nonsense-mediated decay (NMD) is a eukaryotic quality control pathway, involving conserved proteins UPF1, UPF2 and UPF3b, which detects and degrades mRNAs with premature stop codons. Human UPF2 comprises three tandem MIF4G domains and a C-terminal UPF1 binding region. MIF4G-3 binds UPF3b, but the specific functions of MIF4G-1 and MIF4G-2 are unknown. Crystal structures show that both MIF4G-1 and MIF4G-2 contain N-terminal capping helices essential for stabilization of the 10-helix MIF4G core and that MIF4G-2 interacts with MIF4G-3, forming a rigid assembly. The UPF2/UPF3b/SMG1 complex is thought to activate the kinase SMG1 to phosphorylate UPF1 in vivo. We identify MIF4G-3 as the binding site and in vitro substrate of SMG1 kinase and show that a ternary UPF2 MIF4G-3/UPF3b/SMG1 complex can form in vitro. Whereas in vivo complementation assays show that MIF4G-1 and MIF4G-2 are essential for NMD, tethering assays reveal that UPF2 truncated to only MIF4G-3 and the UPF1-binding region can still partially accomplish NMD. Thus UPF2 MIF4G-1 and MIF4G-2 appear to have a crucial scaffolding role, while MIF4G-3 is the key module required for triggering NMD.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Fatores de Transcrição/química , Células HeLa , Humanos , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA